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ABSTRACT

The resonance frequencies of both cylindrical and rectangular dielectric resonators are obtained by a
new method, where we assume that all the surfaces are imperfect magnetic walls. The theoretical values of the
resonance frequencies have a good agreement with our experimental results with an error less than 1 percent.

INTRODUCTION

Since exact solutions of dielectric resonators ha-
ving practical shapes other than a sphere cannot be ri-
gourusly computed, approximate techniques must be adop—
ted to solve the problem.

To show the principle of our method and in order
to hold this paper's length within reasonnable bounds,
we only detail here the case of dielectric disk resona-
tor acting on the dipolar mode ; but we give the eigen-
value equations which are necessary to determinate the
resonance frequencies of the other modes of cylindrical
and rectangular resonators.

Hence we have obtained curves which give rapidly
the resonance frequencies of the resonators as a func-
tion of their parameters (dimensions, relative permit-
tivity) if the resonator is isolated, and also as a
function of the box's dimensions and substrate's permit
tivity and thickness if it is an element of a micros-
trip circuit.

The cylindrical resonator

________________ Let us consider a homoge-
neous, lossless, circular dielectric resonator of rela-
tive permittivity €45 of radius a and height H acting

on the TE modes.
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We note
I - the first order approximation : all the walls of
the resonator are open circuit boundaries (0~C-B).

II,, - the second order approximation {1} only the
cy%indrical surface satisfies the 0.C.B. conditions,
while at the flat surfaces the field extends outside.
The resonance frequency for TE modes can be obtai-

ned from : 0,n,p
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For hybrid EH modes we have a determinant (6 x 6).
We don't give hetE its expression which is too compli-

cated but you can found it in {2} . The characteristic

equation is obtained from the requirement that this de-
terminant vanishes.

II, - we assume that the flat surfaces satisfy the 0.C.B
cohditions, but the cylindrical surface does not.
For EH the characteristic equation is
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Principle of our method

Our method consists of successive applications of
these approximations, in order to determinate an effec-
tive dielectric resonator : radius T height Heff’
permittivity £y Then by applying the f and II
approximation, we obtain two resonance frequencies, the
combination of these gives the resonance frequency of
the real resonator. To define the effective frequency
we proceed as follows.
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With this method £ obtained is the best approxima-
tion of the resonancé frequency of the real resonator.
We present theoretical results on curve 1.

. Shielded cylindrical resonator

The _resonator is_in_a microstrip_structure
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The resonance frequencies of TE
by : (4) (IIH approximation})
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we give the results of this approximation on curve 2.
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The_resonator_is_contained in a cylindrical waveguide

ELECTRIC WALL

&
RESONATOR

The eigenvalue is (5)
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The curve 3 shows the chart we can obtain with such a
geometry.

The_rectangular resonator

. Isolated resonator

The method outlined above is also available to de-
terminate the resonance frequencies of rectangular re-
sonator.

. Modes TE
m’n’p

To determinate the II, approximation we consider
that the a and b surfaces satisfy 0.C.B. conditions,
while the field decay exponentially along the surfaces
perpendicular to the propagation axis.

The eigenvalue equation (1) is still available
but now : 2
n
)

b

The curve 4 gives the theoretical results obtained for
a rectangular resonator acting on the TE11p modes.
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. Hybrid modes

More generally and for modes other than the TE or
TM modes we can study the case for which only one sur—
face of the section (a or b) satisfies the 0.C.B.
conditions.
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Let the y=0, b and z = 0,H surfaces satisfy the
0.C.B. conditions. The characteristic equation is
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This relation (6) can be particularized to the case
of L S EX or L § MX modes respectively longitudinal

electric and magnetic fields

LS EX modes a (7

L S M modes
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shielded resonator

TE mode resonator in
m’n’p

relation (4) is also available but it is necessary to
remplace in this

a microstrip structure, the
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Experimental results

We give results for cylindrical resonator isolated
and acting on the dipolar TEO modes in the table

and for cylindrical resonator$ 3R 4 microstrip struc-
ture on the curve 2.
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Fig.2 : Cylindrical resonator in a microstrip structure

A comparison shows that experimental and theoretical
results agree within 1 Z.

COHN has shown in his report {1} that to obtain
the good resonance frequency by using the II approxi- Fo/10" Hzem?
mation it is necessary to multiply the relative per-
mittivity e, by 0.875 . Our method confirms this va-
lue since we find a factor equal to 0.870.

CONCLUSION

This method allows to obtain with a great accura-
cy the resonance frequency of dielectric resonator,
which is an important parameter for the development
of microwave integrated filters.
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Fig.3 : Cylindrical resonator in an electric wall guide
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Fig.4 : Isolated rectangular resonator.
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Fig.1 : Isolated cylindrical resonator
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